skip to main content


Search for: All records

Creators/Authors contains: "Keister, Julie E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Seasonal hypoxia (≤2 mg dissolved oxygen L−1) can have detrimental effects on marine food webs. Recent studies indicate that some jellyfish can tolerate low oxygen and may have a competitive advantage over other zooplankton and fishes in those environments. We assessed community structure and distributions of cnidarian and ctenophore jellyfish in seasonally hypoxic Hood Canal, WA, USA, at four stations that differed in oxygen conditions. Jellyfish were collected in June through October 2012 and 2013 using full-water-column and discrete-depth net tows, concurrent with CTD casts to measure dissolved oxygen (DO). Overall, southern, more hypoxic, regions of Hood Canal had higher abundances and higher diversity than the northern regions, particularly during the warmer and more hypoxic year of 2013. Of fifteen species identified, the most abundant—the siphonophore Muggiaea atlantica and hydrozoan Aglantha digitale—reached peak densities > 1800 Ind m−3 and 38 Ind m−3, respectively. M. atlantica were much more abundant at the hypoxic stations, whereas A. digitale were also common in the north. Vertical distributions explored during hypoxia showed that jellyfish were mostly in the upper 10 m regardless of the oxycline depth. Moderate hypoxia seemed to have no detrimental effect on jellyfish in Hood Canal, and may have resulted in high population densities, which could influence essential fisheries and trophic energy flow. 
    more » « less
  2. Several hypotheses of how zooplankton communities respond to coastal hypoxia have been put forward in the literature over the past few decades. We explored three of those that are focused on how zooplankton composition or biomass is affected by seasonal hypoxia using data collected over two summers in Hood Canal, a seasonally-hypoxic sub-basin of Puget Sound, Washington. We conducted hydrographic profiles and zooplankton net tows at four stations, from a region in the south that annually experiences moderate hypoxia to a region in the north where oxygen remains above hypoxic levels. The specific hypotheses tested were that low oxygen leads to: (1) increased dominance of gelatinous relative to crustacean zooplankton, (2) increased dominance of cyclopoid copepods relative to calanoid copepods, and (3) overall decreased zooplankton abundance and biomass at hypoxic sites compared to where oxygen levels are high. Additionally, we examined whether the temporal stability of community structure was decreased by hypoxia. We found evidence of a shift toward more gelatinous zooplankton and lower total zooplankton abundance and biomass at hypoxic sites, but no clear increase in the dominance of cyclopoid relative to calanoid copepods. We also found the lowest variance in community structure at the most hypoxic site, in contrast to our prediction. Hypoxia can fundamentally alter marine ecosystems, but the impacts differ among systems. 
    more » « less